Циркуляция атмосферы
Содержание:
- Пассаты
- Погода пассатов
- Примечания и ссылки
- Как изменяется давление на земном шаре
- Виды циркуляции атмосферы
- Местные эффекты
- Постоянные и сезонные ветры
- Зональное распределение давления и ветра у земной поверхности и в нижней тропосфере
- Климат
- 3.1. Атмосферное давление
- Водяной пар в атмосфере
- От чего зависит количество осадков:
- Влияние циркуляции атмосферы на климат
- Погода
- Факторы, влияющие на циркуляцию атмосферы
- Внетропическая циркуляция
Пассаты
Пассаты — это устойчивые в общем восточные ветры умеренной скорости (в среднем 5-8 м/сек у земной поверхности), дующие в каждом полушарии на обращенной к экватору стороне субтропической зоны высокого давления. Однако субтропические зоны даже на средних картах (а тем более на картах ежедневных) распадаются на отдельные антициклоны. Таким образом, пассаты — это ветры в обращенных к экватору частях субтропических антициклонов.
Рис. 95. Схема переноса воздуха в зоне пассатов. Кривые — изобары субтропических антициклонов, сплошные стрелки — ветры у земной поверхности, двойные стрелки — ветры над уровнем трения.
Субтропические антициклоны вытянуты по широте. Поэтому на их обращенной к экватору периферии изобары проходят параллельно широтным кругам, и, следовательно, пассаты над уровнем трения должны иметь восточное направление. Однако на востоке каждого антициклона к восточной составляющей ветра присоединяется еще направленная к экватору составляющая, а на западе — составляющая, направленная от экватора.
В общем же меридиональные составляющие в пассатном переносе малы по сравнению с восточной составляющей.
Распределение давления меняется в тропиках день ото дня мало. Поэтому пассаты обладают большой устойчивостью направления. Но все же, поскольку субтропические антициклоны день ото дня перемещаются, направления пассатных ветров также в общем подвержены некоторым изменениям.
Погода пассатов
В нижнем слое пассатов воздух вследствие влияния трения течет с составляющей, направленной к экватору. На восточной периферии каждого субтропического антициклона эта составляющая, направленная к экватору, значительно усиливается уже независимо от трения. Поэтому, двигаясь на все более теплую поверхность моря, пассатное течение в нижних слоях приобретает неустойчивость стратификации. Устанавливаются большие вертикальные градиенты температуры, часто превышающие сухоадиабатический в нижних сотнях метров, и развивается оживленная конвекция образованием кучевых облаков.
Но конвекция не достигает больших высот. Уже на высотах порядка 1200-2000 м в области пассатов обнаруживается задерживающий слой в несколько сотен метров толщиною с инверсией температуры или, по крайней мере, с уменьшением вертикального градиента температуры. Инверсия и задерживает развитие конвекции на сравнительно низком уровне. Облака не получают большого вертикального развития, нередко принимают характер слоисто-кучевых и, во всяком случае, не достигают уровня оледенения. Поэтому из облаков или вовсе не выпадает осадков, или выпадают незначительные кратковременные дожди.
Примечания и ссылки
- Флоран Беухер , Руководство по тропической метеорологии: от пассатов к циклону , т. 1, Париж, Метео-Франс ,25 мая 2010 г., 897 с. , гл. 3 («Среднезональный климат»), с. 49-68
- , с. 98
- (in) (244 КБ)
- .
- (in) AM Thompson , W.-K. Тао , К. Э. Пикеринг , Дж. Р., Скала и Дж. Симпсон , « Глубокая тропическая конвекция и образование озона » , Бюллетень Американского метеорологического общества , Американское метеорологическое общество , т. 78, п о 6,1997 г., стр. 1043-1054 )
-
(in) Т. Корти , Б. П. Луо , К. Фу , Х. Фемель и Т. Петер , Влияние перистых облаков на перенос тропосферы в стратосферу , Атмосферная химия и физика , Американское метеорологическое общество ,
3 июля 2006 г., стр. 2539-2547 - , с. 99
- ↑ и Флоран Бойхер , Руководство по тропической метеорологии: от пассатов к циклону , т. 1, Париж, Метео-Франс ,25 мая 2010 г., 897 с. , гл. 2 («Энергетический баланс»), с. 41 — 43Раздел 2.8
- .
- Ричард Ледюк и Раймон Жерве , « Знакомство с метеорологией» , Монреаль, Университет Квебека ,1985 г., 320 с. , стр. 72 (раздел 3.6 Основные характеристики общего обращения)
- ↑ и (fr)
Минимумы и максимумы |
|
---|---|
Типы | Тепловое антициклон • барометрического Крит • субтропический Крит • барометрического Creux • муссон корыта • Cyclone внетропического • Cyclone субтропического • Cyclone после тропического • Тропического циклона • Cyclone полярной • вырубленной Депрессии • Полярного депрессия • тепловой депрессия • Погода Shortwave • Тропических волны • Vortex полярным |
Полуперманентная депрессия | Исландский низкий • Алеутская депрессия • Азиатская депрессия |
Полуперманентные максимумы | Антициклон Атлантический (Азорские острова / Бермудские острова) • антициклон Сибирский • Североамериканский высокий • Антициклон острова Св. Елены • антициклон Остров Пасхи • Гавайский антициклон • антициклон Маскарен • Антарктический антициклон |
Классические траектории непостоянных депрессий | Альберта Клиппер • Впадина в Генуэзском заливе (иногда) • Нористер • Зимние штормы в Европе • Синоптические штормы континентальные США |
Метеорологический глоссарий • Шкала Саффира-Симпсона |
Метеорологический портал
Как изменяется давление на земном шаре
Очень интересно, cледи за мыслью:
-
Так как изменение температуры воздуха на земле зонально (изменяется от экватора к полюсам, следовательно атмосферное давление также зонально.
-
На экваторе воздух в течение года всегда теплый, прогретый, а значит и легкий, следовательно давление тоже будет низкое.
-
Легкий воздух поднимается и рассекается, подходя к тропическим широтам (30 — 40 градусов широта) воздух охлаждается и опускается, образуя пояс высокого давления.
-
В полярных широтах — воздух холодный, следовательно наблюдается пояс высокого атмосферного давления.
-
Холодный воздух полярных широт опускается вниз, а не его место приходит теплый воздух умеренных широт.
Пояса давления чередуются между собой и существуют постоянно, немного отклоняясь в зависимости от времени года.
-
Экваториальный пояс — низкое давление
-
Тропический пояс — высокое давление
-
Умеренные широты — низкое давление
-
Полярные области — высокие давление
Линии одинакового атмосферного давления называются — изобары.
Распределение поясов атмосферного давление в первую очередь влияет на распределение ветра.
Виды циркуляции атмосферы
Циркуляция атмосферы имеет несколько разновидностей, среди них выделяют такие виды:
постоянные ветры,
сезонные ветры,
местные ветры
большие атмосферные вихри.
К постоянным ветрам относятся: северо-восточные и южно-восточные ветры, дующие на полюсах с районов повышенного давления; пассаты, которые распространяются от тропиков Южного и Северного полушария с высоким давлением к экватору с низким давлением; западные – ветры умеренных широт.
Сезонными ветрами являются муссоны, которые два раза в год изменяют собственную направленность. В зимний период эти ветры ведут направление от суши на море, а в летний период направление меняется и они дуют с моря на сушу.
Местными ветрами являются бризы, фен, бора, шквалы и другие ветры.
Бризы представляют собой ветры у прибрежной зоны морей и озер, которые изменяют собственную направленность два раза в день. Ночью бриз дует с берега на море, а днем – с моря на сушу.
Фен – это сухой, теплый, порывистый ветер, который дует с гор в долины.
Бора является порывистым, сильным холодным ветром, который дует с низких горных вершин в направлении теплого моря. В местности, куда дует бора, температура снижается.
Шквалы представляют собой резкое, длящееся несколько минут, усиление ветра. Несмотря на свою непродолжительность шквалы могут привести к последствиям катастрофического масштаба.
Большие атмосферные вихри формируют погоду на огромных территориях поверхности Земли, к ним относятся циклоны и антициклоны.
Циклоны – воздушные вихри крупных размеров с низким давление в центре. Циклоны характеризуются сильными разрушениями, ливнями с грозами, сильными ветрами, ураганами, штормами, снегопадами и прочими масштабными потрясениями с явлениями негативного характера.
Для антициклона характерно повышенное атмосферное давление, где воздух распространяется от центра к периферии. Антициклон отличается хорошей и устойчивой погодой, характеризуется небольшими ветрами, ясной погодой, отсутствием осадков или их небольшим количеством.
Местные эффекты
Ячейки Хэдли, Феррела и Полярные клетки дают общее представление об атмосферной циркуляции. Однако местные эффекты очень важны и модулируют эту циркуляцию и создают субклетки. На последние влияют разница в поверхностном трении, способность поглощать и дифференцированно выделять тепло между океанами и сушей, а также суточный цикл солнечного света. Он работает даже в микромасштабе. Например, в случае морского бриза воздух с берега, нагретый Солнцем, поднимается вверх и заменяется более прохладным воздухом из воды. Ночью земля теряет тепло быстрее, чем вода, и направление ветра меняется на противоположное.
В более широком масштабе этот суточный цикл может стать сезонным или даже многолетним. Теплый воздух экваториальных континентов и западной части Тихого океана поднимается вверх, движется на восток или запад в зависимости от обстоятельств, пока не достигает тропопаузы, затем опускается в Атлантическом , Индийском или Восточном Тихом океане, более холодный.
Кровообращение Уокера
Нормальная конвективная циркуляция Уокера
Уменьшение пассатов нарушает цикл Уокера и позволяет горячей воде течь дальше на восток.
Усиление ветров растягивает область, покрытую кровообращением Уокера, и укрепляет ее.
Тихоокеанская ячейка, которая полностью океаническая, особенно важна. Ему было дано имя Уолкер клеток в честь сэра Гилберта Уокера , директора в начале XX — го века метеорологических обсерваторий Индии . Он пытался найти способ предсказывать муссонные ветры. Хотя он и потерпел неудачу, его работа привела его к открытию периодического изменения давления между Индийским и Тихим океанами, которое он назвал Южным колебанием . Две другие идентичные клетки находятся недалеко от экватора в Индийском океане и в Южной Атлантике.
Гумбольдта , исходя из Антарктиды, охлаждает побережье Южной Америки. Следовательно, существует большая разница температур между западом и востоком этого огромного океана, что вызывает прямую циркуляцию, подобную циркуляции Хэдли. Наблюдается конвекция в западной части около Азии и Австралии и опускание в области высокого давления вдоль побережья Южной Америки. Это создает сильную обратную циркуляцию с востока, которая производит эффект каракатицы : уровень моря в западной части Тихого океана на 60 см выше, чем на востоке.
Движение воздуха в этой циркуляции влияет на температуру во всей системе, которая циклически создает необычно теплые или холодные зимы через несколько лет. Это также может изменить частоту ураганов.
Эль-Ниньо и Южное колебание
Поведение ячейки Уокера — главный ключ к пониманию явления Эль-Ниньо (на английском языке ENSO или Эль-Ниньо — Южное колебание). Если конвективная активность снижается в западной части Тихого океана по не совсем понятным причинам, клетка разрушается. Западная циркуляция на высоте уменьшается или прекращается, что перекрывает подачу холодного воздуха в восточную часть Тихого океана, а восточный возвратный поток с поверхности ослабевает.
Это позволяет теплой воде, скопившейся в западной части Тихого океана, спускаться по склону в сторону Южной Америки, что изменяет температуру поверхности моря в этой области в дополнение к нарушению морских течений. Это также полностью меняет систему облаков и дождя, а также создает необычные температуры в Северной и Южной Америке, Австралии и на юго-востоке Африки .
Между тем в Атлантике сильные западные ветры, которые обычно блокируются циркуляцией Уокера, теперь могут достигать необычной силы. Эти сильные ветры отсекают восходящие столбы влажного воздуха от гроз, которые обычно превращаются в ураганы, и таким образом сокращают их количество.
Противоположностью Эль-Ниньо является Ла-Нинья . В этом случае конвекция в западной части Тихого океана увеличивается, что усиливает клетку Уокера, приносящую более холодный воздух вдоль побережья Америки. Последний дает более холодные зимы в Северной Америке и больше ураганов в Атлантике. Поскольку горячая вода под высоким давлением выталкивается на запад, это позволяет холодной воде из глубин подниматься вверх к побережью Южной Америки, что обеспечивает лучшую поставку питательных веществ для рыбы и обеспечивает отличную рыбалку. Однако при ясной погоде в одном и том же регионе наблюдаются продолжительные периоды засухи.
Постоянные и сезонные ветры
Распределение поясов высокого и низкого давления на Земле вызывает возникновение постоянных ветров — пассатов, западных ветров умеренных широт, полярных восточных ветров, сезонных ветров — муссонов.
Ветры тропических широт
Пассаты — это ветры, которые дуют круглый год преимущественно над океаном от тропиков Северного и Южного полушарий к экватору, т. е. из области высокого давления в область низкого давления (см. рис. 10). Под влиянием вращения Земли вокруг оси пассаты отклоняются в Северном полушарии вправо, т. е. дуют с северо-востока на юго-запад, а в Южном — влево и направлены с юго-востока на северо-запад.
Ветры умеренных широт
От тропических поясов высокого давления воздух поступает не только к экватору, но и в умеренные широты, где преобладает низкое давление. Вследствие вращения Земли воздушные течения постепенно отклоняются к востоку. Так они приобретают преимущественно западное направление. Такие ветры, действующие постоянно, называют западными ветрами. Они усиливаются в зимнее время и в течение года обеспечивают западный перенос воздуха.
Ветры полярных областей
В полярных областях Земли воздух перемещается от полярных областей высокого давления в сторону пониженного давления умеренных широт. Это преобладающие северо-восточные ветры в Северном полушарии и юго-восточные — в Южном. Под влиянием вращения Земли ветры усиливаются и принимают восточное направление (откуда дуют) и способствуют общему восточному переносу воздуха. Антарктические ветры, в отличие от арктических, устойчивы и имеют большие скорости.
Сезонные ветры
Постоянно действующая общая циркуляция атмосферы нарушается сезонной циркуляцией. В отличие от постоянных ветров сезонное перемещение воздуха связано с меридиональным перемещением воздуха и вызвано температурными различиями между сушей и морем и неодинаковым давлением над ними. Такие сезонные ветры, меняющие свое направление два раза в год, называют муссонами. Летние муссоны дуют с прохладных океанов с высоким давлением на нагретые материки с низким давлением. Они приносят прохладный насыщенный влагой воздух и вызывают выпадение осадков. Зимний муссон дует с материков с высоким давлением на океан с низким давлением. Он несет холодный и сухой воздух, малооблачную сухую погоду (рис. 11). Действие внетропических муссонов проявляется в восточных частях материков, где с ними соседствуют огромные пространства океанов (на Дальнем Востоке России, в Японии, на Аляске). (Найдите на карте атласа области действия пассатов, западных ветров, полярных восточных ветров, муссонов.)
В тропических широтах Земли муссоны связаны с различиями в температуре и давлении зимой и летом между Северным и Южным полушариями. Они способствуют обмену воздуха между полушариями (Тропическая Африка к северу от экватора, Восточная Африка к югу от экватора, Индостан, Индокитай, Восточный Китай и др).
Зональное распределение давления и ветра у земной поверхности и в нижней тропосфере
У земной поверхности и в нижней тропосфере зональное распределение давления и ветра сложнее, чем в вышележащих слоях.
Имеется зона с пониженным давлением по обе стороны экватора. Параллель с самым низким давлением приходится в январе на 5-10° ю. ш., а в июле — на 15° с. ш. Это — зона экваториальной депрессии, распространяющаяся больше на то полушарие, в котором в данном месяце лето. В направлении к высоким широтам от этой зоны давление в каждом полушарии растет, и максимальные значения давления мы находим в январе под 30-32° северной и южной широты, а в июле — под 33-37° с. ш. и 26-30° ю. ш. Это — две субтропические зоны повышенного давления.
От субтропиков к еще более высоким широтам давление падает, особенно сильно в южном полушарии. Под 75-65° с. ш. и под 60-65° ю. ш. наблюдается минимальное давление в двух субполярных зонах низкого давления, а еще дальше в направлении к полюсам давление снова растет.
Итак, зональность в распределении давления в нижней тропосфере сложнее, чем в распределении температуры. Температура у земной поверхности непрерывно падает от низких широт к высоким. Давление же от экваториальной зоны сначала растет к субтропикам, затем падает к субполярным широтам и снова растет к полюсам.
При этом меридиональный барический градиент направлен от субтропиков к экватору, от субтропиков же к субполярным широтам и от полюса к субполярным широтам; направление барического градиента, таким образом, несколько раз меняется вдоль меридиана (рис. 91). С этим согласуется и зональное распределение ветра, о чем будет сказано ниже.
Рис. 91. Зональное распределение давления и переносов воздуха у земной поверхности и в нижней тропосфере (схема).
Справа — направление барических градиентов вдоль меридиана в соответ-ствующих зонах.
Климат
Климат меняется от экватора к полюсам. Выделяют несколько областей с похожим климатом — климатических поясов.
1) Похожим режимом погоды
2) Одинаковым количеством солнечной радиации
3) Формированием однотипных воздушных масс
Воздушные массы зависят от широты местности
Воздушные массы = ВМ (сокращение)
Выделяют 4 основных типа ВМ:
-
Экваториальные — теплые и влажные
-
Тропические — сухие и теплые
-
Умеренные — менее теплый, но более влажные
-
Арктические — холодные и сухие
Основные воздушные массы могу быть двух подтипов:
-
Континентальными (формируются над метериков)
-
Морскими (формируются над океаном)
Пример: умеренные морские воздушные массы формируется в атлантическом океане, они перемещаются западными ветрами и постепенно теряют влагу, становясь континентальными
Типы климатов имеют название по преобладающей воздушней массе
Климатообразующие факторы:
-
Географическая широта (от нее зависит угол наклона солнечных лучей, а значит количество тепла)
-
Циркуляция атмосферы (преобладающие ветры приносят определенные воздушные массы)
-
Океанические течения
-
Высота местности (с высотой температура понижается)
-
Удаленность от океана (на побережьях перепады зимних и летних температур меньше, чем в центре материков)
-
Рельеф (горные хребты могут задерживать воздушные массы)
3.1. Атмосферное давление
Давление воздуха тесно связано с условиями атмосферной циркуляции в данном районе и является одной из важнейших ее характеристик.
Данные по давлению воздуха в Новгороде, представленные в таблицах, получены на основе многолетних наблюдений по ртутному барометру. В табл. 14 они даны для высоты установки барометра 25,6 м (на уровне станции) и для нулевой высоты (на уровне моря). Пересчет давления от уровня станции к другим; высотам в пределах города или вблизи него может быть осуществлен с помощью приближенного соотношения: на каждые 8 м высоты давление уменьшается на 1 гПа. Один гектопаскаль (гПа) численно равен применявшемуся ранее миллибару (мбар).
Среднее годовое давление воздуха в Новгороде составляет 1011 гПа (табл. 14), оно является устойчивым во времени. Отклонения атмосферного давления в отдельные годы от этого значения весьма незначительны. Самое высокое за весь период наблюдений среднее годовое давление воздуха (1014,9 гПа) отмечено в 1972 г., а самое низкое (1007,1 гПа) — в 1925 г
В течение года атмосферное давление изменяется мало, от 1012,5 гПа в ноябре до 1007,8 гПа в июле. Годовая амплитуда, его (4,7 гПа) мала. Однако изменения средних месячных значений давления из года в год значительны. Так, зимой, как видно из табл. 14, разность между их наибольшим рнаиб и наименьшим рнаим значениями в каждом месяце составляет 31—35 гПа, летом — 13— 18 гПа. Самое высокое (1032,5 гПа) и самое низкое (997,5 гПа) среднее месячное давление воздуха в Новгороде отмечалось в феврале 1886 г. и 1935 г. соответственно. Суточный ход давления воздуха выражен гораздо слабее, чем годовой, практического значения не имеет и здесь не рассматривается.
Годовой и суточный ход давления воздуха перекрывается в- значительной мере непериодическими колебаниями. Эти колебания связаны с прохождением и развитием барических образований (циклонов, антициклонов и др.), они и определяют общий характер изменений давления воздуха в Новгороде. О возможных значениях давления воздуха в отдельные дни можно судить по абсолютному максимуму рмакс И абсолютному минимуму рмин В табл. 14, выбранным из всех сроков наблюдений в каждом месяце. Атмосферное давление в Новгороде 22 января 1907 г. достигало своего наивысшего значения 1059,2 гПа (1062,3 гПа на ур.м ), а 17 января 1931 г. упало до 953,7 гПа (959,8 гПа на ур. м.). Такие рекордные значения давления в Новгороде отмечаются крайне редко, вероятнее всего они зимой. К лету диапазон изменений давления сокращается почти вдвое.
Колебания давления воздуха, связанные с циклонической деятельностью, обычно характеризуются междусуточной изменчивостью — изменением давления воздуха от одних суток к другим (без учета знака изменения). С октября по март междусуточная изменчивость является наибольшей в году и составляет в среднем за месяц 6,3—7,0 гПа (табл. 15). В отдельные редкие дни давление воздуха может понизиться за одни только сутки на 42,3 гПа, как это наблюдалось с 12 по 13 февраля 1962 г., или повыситься на 36,7 гПа (25—26 февраля 1940 г.). Летом перепады давления от одних суток к другим значительно меньше (3,2—3,9 гПа).
Повторяемость разных градаций междусуточной изменчивости давления воздуха в отдельные дни (знак изменения давления воздуха учитывался) дана в табл. 16.
Водяной пар в атмосфере
Эту тему лучше прочитать вдумчиво, воображая происходящее
В атмосфере присутствует водяной пар (маленькие частички воды испарившиеся с поверхности водоемов и суши)
От чего зависит испарение:
-
Температура (чем выше температура, тем больше воды испариться, следовательно будет больше водяного пара в атмосфере)
-
Ветра (чем сильнее ветер, тем выше испарение)
-
Рельефа
Чем больше температура — тем больше абсолютная влажность (тем больше водяного пара)
Подсказка!
-
При равном значении температуры: растет относительная влажность и растет количество водяного пара
-
При равном значении водяного пара: растет температура, уменьшается относительная влажность.
-
При равном значении относительной влажности: растет количество водяного пара и растет температура.
От чего зависит количество осадков:
1) Температуры воздуха
чем выше температуры, тем испарение больше
2) Морских течений:
Теплое течение способствует образованию осадков (воздух над ними теплый и влажный, а следовательно легко поднимается и в соседних областях выпадают осадки)
Холодное течение не способствует образованию осадков (над ними небольшое испарение и воздух из-за этого холодный, почти не насыщенный влагой)
3) Циркуляции атмосферы
-
Если воздух перемещается с водоема с теплым течением на сушу, это способствует выпадению осадков
-
Если воздух перемещается с водоема с холодным течением, это не способствует выпадению осадков
4) Высоты точки
-
В горах насыщенные влагой воздушные массы поднимаются вверх и вследствие охлаждения и конденсации (превращения пара в жидкость) выпадают осадки на наветренных склонах.
-
Например, больше осадков выпадет на восточных склонах Гималаев. Эти склоны называются наветренными, так как на них дует ветер.
5) Количество осадков меняется соблюдая меридиональную и широтную зональность
-
От экватора к полюсам — широтная зональность
-
В Тропическом и умеренном поясе количество осадков уменьшается при движении вглубь континента — меридиональная зональность (например, в Санкт — Петербурге, который находится на берегу финского залива осадков выпадет больше, чем в Тыве, находящейся в центральной части континента)
Влияние циркуляции атмосферы на климат
Циркуляция атмосферы является важным природным явлением, которое влияет на формирование климата Земли и постоянные изменения погодных условий отдельных регионов. Перемещаемые воздушные течения, которые могут быть теплыми или холодными, сухими либо влажными, могут формировать разнообразные режимы климата. Циркуляция атмосферы играет роль в переносе влаги от океанов на континенты, из одних широт в другие.
Подстилающая поверхность местности, рельеф территорий, прибрежные течения являются факторами, обуславливающими движение воздушных масс, проникновение которых на ту или иную область земного шара формирует соответствующую погоду.
Воздушные течения имеют отличительную черту, характеризующуюся вечным движением и трансформацией, однако переходящие границы между ними достаточно резкие, в несколько километров. Такие зоны носят название атмосферные фронты и отличаются изменчивостью направления и скорости ветра, сменой давления, температуры, влажности. Местность, где проходит атмосферный фронт, меняются погодные условия. Атмосферные фронты могут быть холодными и теплыми. Холодные атмосферные фронты приносят холода, дождевые тучи, ливни. Приближению теплого фронта нередко сопутствуют обильные осадки с грозами.
В циркуляции атмосферы перенос воздушных масс и распределение ветров зависит от широт земного шара. Поступление воздушных масс с той или иной широты формирует скорость ветров, осадки, температуру на определенной территории Земли. Важную роль в циркуляции воздушных масс играют муссоны, которые представляют собой стойкие сезонные ветры, меняющие собственное направление в зависимости от сезона дважды в год.
Движение воздушных течений определяет распределение тепла и влажности в атмосфере Земли, тем самым оказывая немаловажное влияние на климат
Погода
Погода не постоянна, у нас может быть сегодня ясная погода, а завтра начаться ураган.
Характеристики погоды:
-
Температура
-
Влажность
-
Атмосферное давление
-
Облачность
-
Осадки
-
Ветер
Очень часто бывает, что две воздушнее массы (холодная и теплая) сталкиваются или одна заходит на другую, линию где эти массы соединяются называют атмосферный фронт.
При прохождение атмосферного фронта погода резко меняется (так как меняются воздушные массы)
Теплый фронт — образуется когда теплый воздух движется в сторону холодного.
Как меняется погода: появляется облачность, выпадают осадки
Холодный фронт — образуется когда холодный воздух движется в сторону теплого.
Холодный воздух подтекает под теплый и выталкивает его наверх.
Как меняется погода: наступает похолодание, усиливается ветер.
Факторы, влияющие на циркуляцию атмосферы
Циркуляция атмосферы обладает достаточно сложным характером, так как на нее оказывают влияние определенные условия, отсутствие которых сделало бы схему циркуляции атмосферы очень простой.
На циркуляцию атмосферы оказывают влияние такие факторы, как форма земного шара, его вращение в сутки, движение планеты Земля вокруг Солнца, расположение морей и суши, рельеф, а также другие факторы.
Форма планеты обуславливает неровное распространение тепла на Земле и провоцирует разнообразное распределение атмосферного давления.
Вращение планеты является фактором, провоцирующим смещение течений воздуха от направления барического вектора в южном полушарии в левом направлении, а в северном – в правом направлении.
Распределение по земному шару морей и суши определяет разнообразную температуру нагревания поверхности Земли. В зависимости от размещения суши и морей, а также смены времен года возникают как постоянные источники тепла и холода, так и дополнительные, сезонные.
На распределение температурного давления влияют ледники и течения, которые могут создавать аномалии в температуре.
Неровный рельеф может затруднять перемещение воздушных течений, тем самым мешать выравниванию давления. Движение воздушных течений образует новые районы как низкого, так и высокого давления.
Внетропическая циркуляция
Выше сказано, что во внетропических широтах преобладает западный перенос воздуха, особенно хорошо выраженный в верхней тропосфере. Од-нако воздушные течения меняются в этих широтах часто и быстро в связи с циклонической деятельностью.
Основной особенностью атмосферной циркуляции во внетропических и особенно в средних широтах является именно интенсивная циклоническая деятельность. Циклонической деятельностью называют постоянное возник-новение, развитие и перемещение в атмосфере внетропических широт круп-номасштабных атмосферных возмущений с пониженным и повышенным давлением — циклонов и антициклонов.